Dr. Moritz Haustein
Research interest
In my research, I focus on the neuroethology of insect walking, specifically in fruit flies (Drosophila melanogaster). My studies center on how the fruit fly moves its legs while walking and how the leg joints contribute to stepping. To analyze and visualize the joint movements, I developed an in silico kinematic leg model. This model combines high-speed 3D motion capture with detailed anatomical data obtained from micro-computed tomography (µCT) scans. Additionally, I am interested in the question of whether joint movements are organized into so-called motor synergies.
Professional experience
- 2023 – present: Postdoctoral researcher, Institute of Zoology, University of Cologne
- 2016 – 2018: Employee in research, Pediatric Cardiology, University Hospital Cologne
- 2003 – 2016: Training and working as biology laboratory technician, Institute of Neurophysiology/ Pediatric Cardiology, University Hospital Cologne
Academic education
- 2019 – 2023: PhD student, Institute of Zoology, University of Cologne
- 2016 – 2018: MSc in Biological Sciences, University of Cologne
- 2011 – 2015: BSc in Natural Sciences, The Open University, Milton Keynes, UK
Publications
Goldsmith, C., Haustein, M., Büschges, A., Szczecinski, S. (2024) A biomimetic fruit fly robot for studying the neuromechanics of legged locomotion. Bioinspir. Biomim. Link
Haustein, M., Blanke, A., Bockemühl, T., and Büschges, A. (2024) A leg model based on anatomical landmarks to study 3D joint kinematics of walking in Drosophila melanogaster. Front. Bioeng. Biotechnol. Sec. Biomechanics Link
Goldsmith, C., Haustein, M., Bockemühl, T., Büschges, A., Szczecinski, N. (2022) Analyzing 3D limb kinematics of Drosophila melanogaster for robotic platform development. In: Biomimetic and Biohybrid Systems. Living Machines 2022 link
Nourse, W., Szczecinski, N., Haustein, M., Bockemühl, T., Büschges, A., Quinn, R. (2019) Analyzing the Interplay Between Local CPG Activity and Sensory Signals for Inter-leg Coordination in Drosophila. In: Biomimetic and Biohybrid Systems. Living Machines 2019, vol 11556. Springer, Cham. Link
Trieschmann, J.#, Haustein, M.#, Köster, A., Hescheler, J., Brockmeier, K., Bennink, G., and Hannes T. (2019). Different Responses to Drug Safety Screening Targets between Human Neonatal and Infantile Heart Tissue and Cardiac Bodies Derived from Human-Induced Pluripotent Stem Cells. Stem Cells Int. 2019:6096294 Link
Trieschmann, J., Bettin, D., Haustein, M., Köster, A., Molcanyi, M., Halbach, M., Hanna, M., Fouad, M., Brockmeier, K., Hescheler, J., Pfannkuche, K., and Hannes, T. (2016). The interaction between adult cardiac fibroblasts and embryonic stem cell-derived cardiomyocytes leads to pro-arrhythmic changes in in vitro co-cultures. Stem Cells Int. 2016:2936126 Link
Haustein, M.#, Hannes, T.#, Trieschmann, J., Verhaegh, R., Köster, A., Hescheler, J., Brockmeier, K., Adelmann, R., and Khalil, M. (2015). Excitation-contraction coupling in zebrafish ventricular myocardium is regulated by trans-sarcolemmal Ca2+ influx and sarcoplasmic reticulum Ca2+ release. PLoS One. 10(5):e0125654 Link
Hannes, T., Wolff, M., Doss, M.X., Pfannkuche, K., Haustein, M., Müller-Ehmsen, J., Sachinidis, A., Hescheler, J., Khalil, M., and Halbach, M. (2015). Electrophysiological characteristics of embryonic stem cell-derived cardiomyocytes are cell line-dependent. Cell Physiol Biochem. 35(1):305-314 Link
Rubach, M., Adelmann, R., Haustein, M., Drey, F., Pfannkuche, K., Xiao, B., Koester, A., Udink ten Cate, F.E., Choi, Y.H., Neef, K., Fatima, A., Hannes, T., Pillekamp, F., Hescheler, J., Saric, T., Brockmeier, K., and Khalil, M. (2014). Mesenchymal stem cells and their conditioned medium improve integration of purified induced pluripotent stem cell-derived cardiomyocyte clusters into myocardial tissue. Stem Cells Dev. 23(6):643-653 Link
Tang, M., Yin, M., Tang, M., Liang, H., Yu, C., Hu, X., Luo, H., Baudis, B., Haustein, M., Khalil, M., Saric, T., Hescheler, J., and Xi, J. (2013). Baicalin maintains late-stage functional cardiomyocytes in embryoid bodies derived from murine embryonic stem cells. Cell Physiol Biochem. 32(1):86-99 Link
Pillekamp, F.#, Haustein, M.#, Khalil, M., Emmelheinz, M., Nazzal, R., Adelmann, R., Nguemo, F., Rubenchyk, O., Pfannkuche, K., Matzkies, M., Reppel, M., Bloch, W., Brockmeier, K., and Hescheler, J. (2012). Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy. Stem Cells Dev. 21(12):2111-2121 Link
Xi, J., Khalil, M., Shishechian, N., Hannes, T., Pfannkuche, K., Liang, H., Fatima, A., Haustein, M., Suhr, F., Bloch, W., Reppel, M., Sarić, T., Wernig, M., Jänisch, R., Brockmeier, K., Hescheler, J., and Pillekamp, F. (2010). Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB J. 24(8):2739-2751 Link
Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L.S., Nguemo, F., Menke, S., Haustein, M., Hescheler, J., Hasenfuss, G., and Martin, U. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 118(5):507-517 Link