skip to content

Dr. Till Bockemühl

Research interests

I am interested in how nervous systems produce motor output for complex behaviors, what these behaviors look like, how they are modulated and adapted to the environment, and what the neuronal basis for these behaviors is. In this context I study walking in insects. Walking is a behavior that can be found in almost all terrestrial animals and is therefore of general interest in the field of motor control. Like other animals, a walking insect has to coordinate its six ambulatory legs, each comprising several degrees of freedom, to produce an overall motor output that can reliably move the animal through its environment. Furthermore, the motor output during walking has to be modulated with regard to parameters like speed and heading, for instance. These parameters, in turn, are influenced by sensory information or internal states of the animal.

To investigate this, I use the fruit fly Drosophila melanogaster as a model organism. Although capable of flight, fruit flies are vigorous walkers and use walking in the context of many behaviors like near-range exploration, foraging, mating, and escape. Fruit flies have a short generation time and are easy to breed and keep, which makes them ideal laboratory animals. More importantly, however, they are genetically accessible and the genetic toolkit available in Drosophila allows for very precise and elegant manipulations of its nervous system.

Publications

  • Feng, K., Sen, R., Minegishi, R., Dübbert, M., Bockemühl, T., Büschges, A., & Dickson, B. J. (2020). Distributed control of motor circuits for backward walking in Drosophila. Nature communications, 11(1), 1-17. https://doi.org/10.1038/s41467-020-19936-x

  • Bidaye, S. S., Laturney, M., Chang, A. K., Liu, Y., Bockemühl, T., Büschges, A. and Scott, K. (2020). Two brain pathways initiate distinct forward walking programs in Drosophila. Neuron, https://doi.org/10.1016/j.neuron.2020.07.032

  • Dinges, GF, Chockley, AS, Bockemühl, T, Ito, K, Blanke, A, Büschges, A. Location and arrangement of campaniform sensilla in Drosophila melanogaster . J Comp Neurol. 2020; 1– 21. https://doi.org/10.1002/cne.24987

  • Mantziaris, C.*, Bockemühl, T.*, & Büschges, A.* (2020). Central pattern generating networks in insect locomotion. Developmental Neurobiology, 80:16-30 (*authors contributed equally)
  • Nourse, W., Szczecinski, N. S., Haustein, M., Bockemühl, T., Büschges, A., Quinn, R. (2019). Analyzing the interplay between local CPG activity and sensory signals for inter-leg coordination in Drosophila. Conference on Biomimetic and Biohybrid Systems, Paris, 2019, 342 - 345
  • Szczecinski, N. S.*, Bockemühl, T.*, Chockley, A. S., Büschges, A. (2018). Static stability predicts the continuum of interleg coordination patterns in Drosophila. Journal of Experimental Biology, 221(22), jeb189142. *shared first authorship
  • Szczecinski, N. S., Büschges, A., Bockemühl, T. (2018). Direction-specific footpaths can be predicted by the motion of a single point on the body of the fruit fly Drosophila melanogaster. Conference on Biomimetic and Biohybrid Systems, Paris, 2018, 477 - 489.
  • Bidaye, S. S., Bockemühl, T., Büschges, A. (2018). Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. Journal of Neurophysiology 119 (2), 459 - 475. *shared first authorship
  • Bockemühl, T. (2017). Prehensile movements. In: Neurobiology of Motor Control: Fundamental Concepts and New Directions (Eds. Hooper, S. and Büschges, A.), 341 - 364.
  • Mantziaris, C., Bockemühl, T., Holmes, P., Borgmann, A., Daun, S., & Büschges, A. (2017). Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect. Journal of Neurophysiology 118: 2296–2310.
  • Berendes, V., Zill, S. N., Büschges, A., and Bockemühl, T. (2016) Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. Journal of Experimental Biology 219: 3781-3793
  • Gruhn, M., Rosenbaum, P., Bockemühl, T., & Büschges, A. (2016). Body side-specific control of motor activity during turning in a walking animal. eLife, 5, e13799.
  • Berendes, V., Dübbert, M., Bockemühl, T., Schmitz, J., Büschges, A., & Gruhn, M. (2013). A laser-supported lowerable surface setup to study the role of ground contact during stepping. J. Neurosci. Methods 215(2): 224-233.
  • Wosnitza, A.*, Bockemühl, T.*, Dübbert, M., Scholz, H., & Büschges, A. (2013). Inter-leg coordination in the control of walking speed in Drosophila. J. Exp. Biol. 216(Pt 3): 480-491. *shared first authorship
  • Bläsing, B., Maycock, J., Bockemühl, T., Ritter, H., & Schack T. (2013). Motor synergies and mental representations of grasping movements. Proceedings ICRA 2013 Workshop on Hand synergies - how to tame the complexity of grasping. Karlsruhe, Germany.
  • Bockemühl, T., N. F. Troje, & Dürr, V. (2010). Inter-joint coupling and joint angle synergies of human catching movements. Hum. Mov. Sci. 29(1): 73-93.
  • Maycock J, Bläsing B, Bockemühl, T., Ritter H, & Schack T. (2010). Motor synergies and object representations in virtual and real grasping. In: 1st International Conference on Applied Bionics and Biomechanics (ICABB). Venice, Italy: IEEE.
  • Bockemühl, T. & Dürr, V. (2010). A minimal control schema for goal-directed arm movements based on physiological inter-joint coupling. Proceedings of the International Conference on Neural Computation (ICNC 2010, Valencia, Spain).
  • Bläsing, B., Maycock, J., Bockemühl, T., Ritter, H., & Schack, T. (2010). Motor synergies in grasping real and virtual objects. Presented at the KogWis 2010 - The 10th Biannual Meeting of the German Society for Cognitive Science, University of Potsdam, Germany.
  • Schütz, C., Bockemühl, T., & Schack, T. (2009). Augmented Reality im Koordinationstraining. In S. D. Baumgärtner, F. Hänsel, & J. Wiemeyer (Eds.), Informations- und Kommunikationstechnologien in der Sportmotorik (p. 76).
  • Bockemühl, T., Bläsing, B., & Schack, T. (2009). Motorische Synergien von Handbewegungen beim Greifen virtueller Objekte. In S. D. Baumgärtner, F. Hänsel, & J. Wiemeyer (Eds.), Informations- und Kommunikationstechnologien in der Sportmotorik (pp. 169–171).
  • Bläsing, B., Bockemühl, T., & Schack, T. (2009). Motorische Synergien und mentale Repräsentation von Handbewegungen beim Greifen virtueller Objekte. In I. Pfeffer & D. Alfermann (Eds.), Menschen in Bewegung - Sportpsychologie zwischen Tradition und Zukunft (Vol. 188, p. 36). Hamburg: Czwalina Verlag.
  • Bockemühl, T., Troje, N. F., & Dürr, V. (2006). Principal components as motor synergies of human catching movements. Proc.Soc.Exp.Biol.143(4).
  • Bockemühl, T. & Dürr, V. (2004). A small set of principal components can efficiently describe human arm movement. Proc. 7th Congr. Int. Soc. Neuroethol., (p. 228).